Photo-nuclear jet production in Pb+Pb collisions at the LHC

Prof. Brian Cole Columbia University

Photo-nuclear jet production in Pb+Pb collisions at the LHC

Prof. Brian Cole Columbia University

Nuclear parton distributions

- Recent CTEQ analysis of nuclear PDFs with comparisons to other fits
 - ⇒Large uncertainties, especially at low x
- New data needed to reduce uncertainties
- -Theoretical proposal by Strikman et al in 2005:
- ⇒measure dijet photoproduction in ultraperipheral nuclear collisions
- ⇒Until now, not realized by any experiment

Measurement Coverage

Figure adapted from EPPS16 1612.05741 [hep-ph]

Measurement Coverage

Figure adapted from EPPS16 1612.05741 [hep-ph]

• ATLAS-CONF-2017-011

Ultra-peripheral Pb+Pb collisions

- Ultra-relativistic nuclei source strong EM fields
- Photons coherently emitted by entire nucleus are enhanced by Z²
 - $k_{\perp} \sim \hbar c / 2R_A \sim 15 MeV$

$$-k^{\gamma}z = \gamma_{boost} \times k^{\gamma} \sim 40 \text{ GeV}$$

- ⇒In AA collisions, energetic enough to stimulate hard scattering processes at low x in the target
- ⇒Cross-section enhanced by Z²A ~ 1.5 x 10⁶ compared to pp collisions at the same √s
- Photo-nuclear dijet/multi-jet production measured using 2015 √s_{NN} = 5.02 TeV Pb+Pb data

Direct processes

Resolved processes

Zero degree calorimeters (ZDCs)

- ATLAS ZDCs measure beam-rapidity neutrons emitted in Pb+Pb collisions
- -hadronic collisions in nucleus produce ≥ 1 neutron in target direction with probability ≈ 1
- -photon-emitting nucleus nominally emits 0 neutrons
- ⇒However, additional soft photon exchanges cause neutron emission ~ 30% of the time.

Triggers & Event selection

- The base trigger required:
- ≥ 1 neutron in one ZDC, zero neutrons in the other
 ⇒exclusive OR
- -Minimum total transverse energy, $\Sigma E_T > 5$ GeV
- -Maximum total transverse energy, ΣE_T < 200 GeV
- Two additional triggers were used that required jets with $p_T > 25$ GeV (nominally).
- -Jet triggers sampled total luminosity of 0.38 nb⁻¹
- ⇒Note: Pb+Pb hadronic cross-section is 7.7 b.
- ZDC used to select 0nXn events (fiducial)
 - ⇒no correction for photon emitter breakup
- Additional gap requirements to suppress hadronic, diffractive, γγ→qqbar backgrounds

ZDC selection

- Events selected ZDC "XOR" trigger
 - -Red: photon-going direction, 0n
 - ⇒Some inefficiency in ZDC trigger rejection due to out-of-time pile-up (preceding collisions)
 - -Black: nuclear direction, Xn

Gap analysis

- Require gap on photon side: $\Sigma_{Y} \Delta \eta > 2$
- Reject large gaps on nuclear side: $\Sigma_A \Delta \eta < 3$

Event Topology: Gaps vs Multiplicity

- Left: ΣγΔη vs N_{trk} for 0nXn
- Right: N_{trk} distributions for events with $(\Sigma \gamma \Delta \eta > 2)$ and without $(\Sigma \gamma \Delta \eta < 1)$ gaps.
 - ⇒clear difference between photo-nuclear and hadronic collision events

- Jets reconstructed using anti-k_t algorithm w/ R = 0.4
- -EM+JES calibration + flavor correction
- Measure differential cross-sections vs H_T, x_A, z_Y

$$m_{
m jets} \equiv \left(\sum E_i - \left|\sum ec{p_i}
ight|
ight)^{1/2} \qquad y_{
m jets} \equiv \pm rac{1}{2} \ln \left|rac{\sum E_i + \sum p_{z\,i}}{\sum E_i - \sum p_{z\,i}}
ight|
onumber \ H_{
m T} \equiv \sum p_{
m T\,i} \qquad x_{
m A} = rac{m_{
m jets}}{\sqrt{s}} e^{-y_{
m jets}} \qquad z_{\gamma} = rac{m_{
m jets}}{\sqrt{s}} e^{+y_{
m jets}}$$

 $-p_z$, z_y , y defined to be positive in photon direction

- Jets reconstructed using anti-k_t algorithm w/ R = 0.4
- -EM+JES calibration + flavor correction
- Measure differential cross-sections vs H_T, x_A, z_Y

$$m_{
m jets} \equiv \left(\sum E_i - \left|\sum ec{p_i}
ight|
ight)^{1/2} \qquad y_{
m jets} \equiv \pm rac{1}{2} \ln \left|rac{\sum E_i + \sum p_{z\,i}}{\sum E_i - \sum p_{z\,i}}
ight|$$
 $H_{
m T} \equiv \sum p_{
m T\,i} \qquad x_{
m A} = rac{m_{
m jets}}{\sqrt{s}} e^{-y_{
m jets}} \qquad z_{\gamma} = rac{m_{
m jets}}{\sqrt{s}} e^{+y_{
m jets}}$

- $-p_z$, z_y , y defined to be positive in photon direction
- •For 2→2 processes:
- $-x_A \rightarrow x$ of struck parton in nucleus, $z_\gamma \rightarrow x_\gamma y_\gamma$, $H_T \rightarrow 2Q$

- Jets reconstructed using anti-k_t algorithm w/ R = 0.4
- -EM+JES calibration + flavor correction
- Measure differential cross-sections vs H_T, x_A, z_Y

$$m_{
m jets} \equiv \left(\sum E_i - \left|\sum ec{p_i}
ight|
ight)^{1/2} \qquad y_{
m jets} \equiv \pm rac{1}{2} \ln \left|rac{\sum E_i + \sum p_{z\,i}}{\sum E_i - \sum p_{z\,i}}
ight|$$
 $H_{
m T} \equiv \sum p_{
m T\,i} \qquad x_{
m A} = rac{m_{
m jets}}{\sqrt{s}} e^{-y_{
m jets}} \qquad z_{\gamma} = rac{m_{
m jets}}{\sqrt{s}} e^{+y_{
m jets}}$

- $-p_z$, z_y , y defined to be positive in photon direction
- •For 2→2 processes:
- $-x_A \rightarrow x$ of struck parton in nucleus, $z_\gamma \rightarrow x_\gamma y_\gamma$, $H_T \rightarrow 2Q$
- Fiducial acceptance:
 - ⇒p_Tlead > 20 GeV, p_Tsub-lead > 15 GeV
 - \Rightarrow | η_{jet} | < 4.4, H_T > 40 GeV

- Jets reconstructed using anti-k_t algorithm w/ R = 0.4
- -EM+JES calibration + flavor correction
- Measure differential cross-sections vs H_T, x_A, z_Y

$$m_{
m jets} \equiv \left(\sum E_i - \left|\sum ec{p_i}
ight|
ight)^{1/2} \qquad y_{
m jets} \equiv \pm rac{1}{2} \ln \left|rac{\sum E_i + \sum p_{z\,i}}{\sum E_i - \sum p_{z\,i}}
ight| \ H_{
m T} \equiv \sum p_{
m T\,i} \qquad x_{
m A} = rac{m_{
m jets}}{\sqrt{s}} e^{-y_{
m jets}} \qquad z_{\gamma} = rac{m_{
m jets}}{\sqrt{s}} e^{+y_{
m jets}}$$

- $-p_z$, z_y , y defined to be positive in photon direction
- •For 2→2 processes:
- $-x_A \rightarrow x$ of struck parton in nucleus, $z_\gamma \rightarrow x_\gamma y_\gamma$, $H_T \rightarrow 2Q$
- Fiducial acceptance:
 - ⇒p_Tlead > 20 GeV, p_Tsub-lead > 15 GeV
 - \Rightarrow | η_{iet} | < 4.4, H_T > 40 GeV
- No unfolding for jet response

Photo-nuclear Monte Carlo

- Pythia 6 used in "mu/gamma + p" mode to simulate photo-production @ 5.02 TeV
- -Contains mixture of direct and resolved processes
- ⇒Does not have right photon flux
- "STARlight" model describes photon flux in ultra-peripheral nucleus-nucleus collisions
- -Used modified STARlight to calculate weights applied on per-event basis to Pythia sample:

$$\frac{\mathrm{d}\sigma_{\mathrm{UPC}}^{\mathrm{Pb+Pb}}}{\mathrm{d}E} = 2 \int \mathrm{d}^2 b \, P_{\mathrm{UPC}}(b) \int \mathrm{d}^2 s_{\mathrm{B}} \, \frac{\mathrm{d}^2 N_{\gamma}^{\mathrm{Pb}}}{\mathrm{d}E \, \mathrm{d}^2 s_{\mathrm{A}}} \Bigg|_{\vec{s_{\mathrm{A}}} = \vec{b} - \vec{s_{\mathrm{B}}}} T_{\mathrm{Pb}}(s_{\mathrm{B}}) \sigma^{\gamma N} \equiv \boxed{\frac{\mathrm{d}N_{\gamma}^{\mathrm{eff}}}{\mathrm{d}E} \sigma^{\gamma N}}$$

$$w(E) \equiv \frac{\mathrm{d}N_{\gamma}^{\mathrm{eff}}}{\mathrm{d}E} / \frac{\mathrm{d}N_{\gamma}^{\mathrm{PYTHIA}}}{\mathrm{d}E}$$

Monte Carlo re-weighting

Re-weighted
Pythia in good
(not perfect)
agreement
with data

- Data and MC z_i distributions and ratio
 - -with and w/o re-weighting

Data-MC comparisons

- Good agreement for $\Sigma \gamma$ $\Delta \eta$ after re-weighting
 - ⇒Can trust MC-based corrections for event selection efficiency

- Also good agreement for y_{jets}
 - ⇒See backward shift because z_Y < x_A

2-D cross-sections

- Acceptance in (zγ, xA) strongly dependent on minimum jet system mass
- Determined by minimum p_T in analysis
- ⇒Easiest way to get to low x_A is large z_Y

Corrections and systematics

- Correct for inefficiency introduced by event selection requirements
- -ZDC inefficiency: can lose 0n1n contribution
- ⇒On average: 0.98 ± 0.01
- -"EM pileup": extra neutrons from EM dissociation
- ⇒5 ± 0.5% on overall normalization
- -Signal events removed by gap requirement
- ⇒resulting inefficiency evaluated in MC sample
- \Rightarrow ~1% correction except at very large z_{γ}
- Luminosity: 6.1% uncertainty
- Jet response:
 - -energy scale and resolution uncertainties
 - \Rightarrow vary with H_T, x_A, z_Y

Results: H_T Dependence

Differential crosssection in slices of x_A

Not in systematic bands: overall normalization systematic of 6.2%

Not exactly same as $F_2(x,Q^2)$

- Still has ~1/Q⁴ and z_γ dependence in cross section
- Don't expect to see scaling explicitly

Results: z_Y dependence

Differential crosssection in slices of H_T

Largest disagreement with model at small z_7 where re-weighted distribution most disagrees with data

Can extend to lower x_A by going to higher z_Y

Results: x_A Dependence

- Data agrees w/ MC over most of acceptance
 - ⇒But limitations in MC sample (e.g. no γ+n, no nPDF)

Summary, conclusions

- Presented a measurement of photo-nuclear jet production: ATLAS-CONF-2017-011
- Qualitatively different than normal jet production in hadronic collisions
- Expected features— rapidity gaps and neutron distributions— observed in the data
- Good but not perfect MC-data agreement
- ⇒Need MC with Pb+Pb EPA photon flux to avoid reweighting which has conceptual difficulties
- Proof of principle that photo-nuclear dijet/multijet measurements possible in Pb+Pb collisions
- Can access x_A, Q² (H_T) range not covered by existing fixed-target data.
- \Rightarrow kinematic coverage primarily constrained by minimum jet p_T , but also $\Sigma \gamma \Delta \eta > 2$ requirement